Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Thromb Thrombolysis ; 53(2): 273-281, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1401065

ABSTRACT

SARS-CoV-2 represents the causative agent of the current pandemic (COVID-19). The drug repurposing technique is used to search for possible drugs that can bind to SARS-CoV-2 proteins and inhibit viral replication. In this study, the FDA-approved antiplatelets are tested against the main protease and spike proteins of SARS-CoV-2 using in silico methods. Molecular docking and molecular dynamics simulation are used in the current study. The results suggest the effectiveness of vorapaxar, ticagrelor, cilostazol, cangrelor, and prasugrel in binding the main protease (Mpro) of SARS-CoV-2. At the same time, vorapaxar, ticagrelor, and cilostazol are the best binders of the spike protein. Therefore, these compounds could be successful candidates against COVID-19 that need to be tested experimentally.


Subject(s)
Antiviral Agents , Platelet Aggregation Inhibitors , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Cilostazol , Coronavirus 3C Proteases/antagonists & inhibitors , Humans , Lactones , Molecular Docking Simulation , Molecular Dynamics Simulation , Platelet Aggregation Inhibitors/pharmacology , Pyridines , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Ticagrelor , COVID-19 Drug Treatment
2.
Drug Dev Res ; 82(2): 217-229, 2021 04.
Article in English | MEDLINE | ID: covidwho-798845

ABSTRACT

Coronavirus disease 2019 (COVID 19) was first identified in Wuhan, China near the end of 2019. To date, COVID-19 had spread to almost 235 countries and territories due to its highly infectious nature. Moreover, there is no vaccine or Food and Drug Administration (FDA)-approved drug. More time is needed to establish one of them. Consequently, the drug repurposing approach seems to be the most attractive and quick solution to accommodate this crisis. In this regard, we performed molecular docking-based virtual screening of antiplatelet FDA-approved drugs on the key two viral target proteins: main protease (Mpro ) and spike glycoprotein (S) as potential inhibitor candidates for COVID-19. In the present study, 15 antiplatelet FDA-approved drugs were investigated against the concerned targets using the Molecular Docking Server. Our study revealed that only cilostazol has the most favorable binding interaction on Mpro (PDB ID: 6LU7) and cilostazol, iloprost, epoprostenol, prasugrel, and icosapent ethyl have a higher binding affinity on spike glycoprotein (S) (PDB ID: 6VYB) compared with recent anti-CoVID-19. Therefore, cilostazol is a promising FDA drug against COVID-19 by inhibiting both Mpro and S protein. The insights gained in this study may be useful for quick approach against COVID-19 in the future.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/metabolism , Platelet Aggregation Inhibitors/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Cilostazol/metabolism , Cilostazol/therapeutic use , Drug Approval , Drug Evaluation, Preclinical , Drug Repositioning , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/therapeutic use , Epoprostenol/metabolism , Epoprostenol/therapeutic use , Humans , Iloprost/metabolism , Iloprost/therapeutic use , Molecular Docking Simulation , Platelet Aggregation Inhibitors/therapeutic use , Prasugrel Hydrochloride/metabolism , Prasugrel Hydrochloride/therapeutic use , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL